US 20210157670A1

a2y Patent Application Publication o) Pub. No.: US 2021/0157670 A1

a9y United States

KAGAN et al.

43) Pub. Date: May 27, 2021

(54) AUTOMATED CRASH RECOVERY

(71) Applicant: Disney Enterprises, Inc., Burbank, CA
(US)

(72) Inventors: Gary KAGAN, New York, NY (US);
Nathan LEFLER, New York, NY
(US); Josh PHELPS, New York, NY
(US); James A.
CORRIGAN-COLVILLE, New York,
NY (US); Benjamin MANNING, New
York, NY (US)

(21) Appl. No.: 16/696,734

Publication Classification

(51) Int. CL
GOGF 11/07 (2006.01)
GOGF 11/36 (2006.01)
(52) US.CL
CPC GOGF 11/0778 (2013.01); GOGF 11/366

(2013.01); GOGF 11/0715 (2013.01); GO6F
11/0748 (2013.01); GO6F 11/079 (2013.01);
GO6F 11/3636 (2013.01)

(57) ABSTRACT

Methods for improving operation of a user device running
an application. The methods include collecting a first set of
data corresponding to a run time environment of the appli-
cation, collecting a second set of data corresponding to a
crash of the application, identifying a cause of the crash
based on the first set of data and a second set of data and
determining the cause of the crash is associated with an

(22) Filed: Nov. 26, 2019 application feature corresponding to a feature flag.
y
ar o 400
Compare the crash report and the
. — 405
environmental data
Identify the
430 cause of the crash ?
415

Select a countermeasure
based on environmental
data

Associated with
feature flag?

Disable the cause
of the crash
using the feature flag

— 420

425

y

Send information to a
crash reporting service

Patent Application Publication

115

120

125

130

May 27,2021 Sheet 1 of 5

US 2021/0157670 Al

User Device

110
Processor
User-Facing
Application 150
Crash Recovery
Mechanism 155
Volatile Memory /O Devcie 135
Non-Volatile Transceiver 140
Memory
Display Device Other Components 145

Fig. 1

Patent Application Publication

(s)
'

Application launch

!

Enable crash reporter

220

Predetermined
condition satisfied ?

Collect and store environmental data

g

— 205

— 210

May 27,2021 Sheet 2 of 5 US 2021/0157670 Al

230

Crash recovery analysis

235

:

Disable application feature

Yes

Patent Application Publication = May 27, 2021 Sheet 3 of 5 US 2021/0157670 A1

(Start) /Mg(fQOd

Record a timestamp for the application
launch time

Y

Inspect the memory and record information
corresponding to the configuration of the |— 310
application’'s machine code

Y

— 305

Record user actions — 315
Record network requests and responses — 320

!

The application crashes and the
enviornmental data is saved to the hard |— 325
drive

Fig. 3

Patent Application Publication = May 27, 2021 Sheet 4 of 5 US 2021/0157670 A1

Method
(Start) / 400

Compare the crash report and the
environmental data

— 405

Identify the

430 cause of the crash 7

415

Select a countermeasure
based on environmental
data

Associated with
feature flag?

Disable the cause
of the crash — 420
using the feature flag

425
y

Send information to a
crash reporting service

End

Fig. 4

Patent Application Publication = May 27, 2021 Sheet 5 of 5 US 2021/0157670 A1

905 Crash Time: 2018-06-11 09:55:54.5320

Launch Time: 2018-06-11 09:55:48.3086

Application Feature Absolute Location Load Location Function Offset
Video 0x000000100dc250¢ 0x100d44000 517388
Video 0x000000100dc215¢c 0x100d44000 516444
v Profile 0x000000100dc21b8 0x100d44000 1023072
510 Scarch 0x000000100e3dc60 0x100d44000 221092
Analytics 0x00000010072dfa4 0x1006f8000 313572
520 515

User Actions

Save Profile

Edit Profile

Video Playback Exit

Video Playback Change Audio Language
Video Playback Start

Home

App Start

Fig. 5

US 2021/0157670 Al

AUTOMATED CRASH RECOVERY

BACKGROUND INFORMATION

[0001] An application running on a user device may crash
for any of a plurality of different reasons. Under conven-
tional circumstances, the cause of the crash may not be fixed
until an update is provided to the user device. However, the
process of notifying a developer that the crash has occurred,
determining the cause of the crash, generating the update
and providing the update to the user device takes time. The
longer this process takes, the longer the user is without a
properly functioning application.

[0002] Various negative consequences may arise while the
cause of the crash remains unresolved. For example, the
application’s ability to generate revenue may be limited, the
application’s reputation may be negatively impacted, the
user may be unable to access services the user expects to be
available, the user may turn to a competitor’s application,
etc. Thus, both the entity that distributes the application and
the user want the application to resume operating without
crashing as quickly as possible. Accordingly, there is a need
for a mechanism that is able to quickly mitigate the cause of
the crash.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 shows an exemplary user device according
to various exemplary embodiments.

[0004] FIG. 2 shows an exemplary method for the user-
facing application configured to implement automated crash
recovery according to various exemplary embodiments.
[0005] FIG. 3 shows an exemplary method for recording
environmental data according to various exemplary embodi-
ments.

[0006] FIG. 4 shows an exemplary method for crash
recovery analysis according to various exemplary embodi-
ments.

[0007] FIG. 5 shows an example of environmental data
according to various exemplary embodiments.

DETAILED DESCRIPTION

[0008] The exemplary embodiments may be further under-
stood with reference to the following description and the
related appended drawings, wherein like elements are pro-
vided with the same reference numerals. The exemplary
embodiments are related to a device, a system, and a method
for automated crash recovery at a user device. As will be
described below, the exemplary embodiments relate to
improving the operation of a user device running an appli-
cation by mitigating causes of application crashes locally, at
the user device.

[0009] The exemplary embodiments are described with
regard to a user-facing application running on a user device.
A user-facing application generally refers to an application
that is configured for user interaction. However, any refer-
ence to the application being a particular type of application
or the user device being a particular type of device is only
provided for illustrative purposes. The exemplary embodi-
ments may apply to any type of software being executed by
any type of electronic device equipped with the appropriate
hardware.

[0010] The exemplary embodiments are also described
with regard to the application experiencing a crash.
Throughout this description, a crash generally refers to an

May 27, 2021

instance during which the application does not operate as
intended. To provide an example from the user perspective,
when the crash occurs the application may appear to freeze
or unexpectedly quit. Any reference to the term crash is
provided for illustrative purposes. Different entities may
refer to a similar concept by a different name. The exemplary
embodiments may apply to any type of error that may occur
during the execution of the application that causes the
application to operate in an unintended manner.

[0011] To provide a general example of when and why an
application may crash consider the following exemplary
scenario. The user device is powered on, an operating
system has been booted, the application’s machine code is
included in storage and the application is available for user
selection.

[0012] Subsequently, the application may be selected by
the user via user input. This may trigger the application to
launch which may include a mechanism loading the appli-
cation’s machine code into memory for execution.

[0013] From the user perspective, as the application loads
the user may be presented with various graphics. During
runtime, the user may be presented with one or more
graphical user interfaces (GUIs) that may include or relate to
any of a variety of different application features. Throughout
this description, an application feature may refer to any
aspect of the application that is a result of executing machine
code. For example, the term application feature may refer to
any of the following aspects: a graphic, an animation, a
media player, a web browser, a display setting (e.g., dark
mode, a GUI format, aspect ratio, font size, etc.), a compo-
nent configured to respond to input, an advertisement, a web
feed, a component configured to alter or enhance media
(e.g., apply a filter, crop, convert file format, etc.) or a
component configured to group data (e.g., create a photo
album, create a playlist, etc.). These exemplary aspects of
the application are only provided for illustrative purposes
and are not intended to limit the term application feature to
any particular aspect. Accordingly, throughout this descrip-
tion, the term application feature is used to represent any
aspect of the application that is a result of executing machine
code.

[0014] Each application feature may be represented by
various programming constructs (e.g., methods, functions,
procedures, system calls, conditional statement, etc.). Dur-
ing runtime, the executed machine code may include
instructions that represent various programming constructs
for the application feature. For example, an application
feature such as a video player may be based on one or more
functions. To provide the functionality of the video player to
the user, the portion of the machine code corresponding to
the one or more functions may be executed.

[0015] The application may crash due to the execution of
a portion of the application’s machine code at any instance
after the application has been launched. For example, a crash
may occur if the execution of the machine code causes the
application to attempt to read or write to a portion of the
memory that is not allocated to the application. Other causes
of a crash may include scenarios such as, but not limited to,
executing machine code that comprises privileged or invalid
instructions, attempting to perform an invalid system call,
attempting to access restricted or non-existent resources,
executing invalid arguments, etc. Accordingly, the cause of
a crash may be the execution of machine code that corre-
sponds to a particular application feature.

US 2021/0157670 Al

[0016] The application may be configured to utilize a
crash reporter. Conventionally, a crash reporter generally
refers to a mechanism that is configured to gather informa-
tion regarding the execution of the application prior to the
crash and then provide the information to a remote location,
e.g., a crash reporting service. Subsequently, the cause of the
crash may be determined and then an update may be
generated that is intended to fix the cause of the crash. The
update may then be provided to the user device. The update
may then be provided to the user device. Once the update is
downloaded at the user device, the updated application may
return to operating without crashing. However, this conven-
tional crash reporting process necessarily takes time because
the crash needs to be reported to the crash reporting service
and the developer and then the update needs to be created,
tested and downloaded. Accordingly, conventional crash
reporting inadequately addresses the user and developer’s
desire to resume operating the application as quickly as
possible in a manner that avoids crashes.

[0017] The exemplary embodiments relate to mitigating
the cause of the crash locally at the user device. For instance,
a mechanism may be implemented that determines which
portion of the application’s machine code caused a crash to
occur. The mechanism may then disable the application
feature that corresponds to the identified portion of the
application’s machine code. As a result, the portion of the
application’s machine code that was triggering the crash is
no longer executed and thus, the application may operate
without crashing.

[0018] The exemplary embodiments are described with
regard to mitigating the cause of the crash by disabling an
application feature using a feature flag. Throughout this
description a feature flag refers to a component of the
application that enables or disables the execution of the
machine code corresponding to an application feature.
Accordingly, an application feature may correspond to a
feature flag. If an application feature corresponds to a feature
flag, the application has been configured to operate when the
particular application feature is either enabled or disabled.
Any reference to a feature flag is for illustrative purposes,
different entities may refer to a similar concept by a different
name.

[0019] In the context of source code, the feature flag may
be a variable within a conditional statement. When the
feature flag is set to a first value, a block of code may be
executed and when the feature flag is set to a second value,
the block of code may not be executed. The exemplary
mechanism may be configured to modify the local copy of
the configuration to set a feature flag (e.g., enable/disable the
corresponding application feature).

[0020] To provide a general example, the mechanism may
identify that the machine code corresponding to a particular
animation is causing the application to crash. This animation
is an application feature with a corresponding feature flag.
Subsequently, the mechanism may change the value of the
feature flag to disable the execution of the machine code
corresponding to the animation. As a result, from the user
perspective, the animation is no longer displayed, and the
application operates without crashing. Thus, compared to
applications that rely solely on conventional crash reporting,
the exemplary embodiments provide a more fault tolerant
application that is able to recover from a crash faster by
mitigating the cause of the crash locally and without human
intervention.

May 27, 2021

[0021] FIG. 1 shows an exemplary user device 110
according to various exemplary embodiments. Those skilled
in the art will understand that the user device 110 may be any
type of electronic component that is configured to execute
software or firmware, e.g., a desktop computer, a mobile
phone, a tablet computer, a smartphone, phablets, embedded
devices, wearable device, Internet of Things (IoT) devices,
etc. Accordingly, the user device 110 may represent any
electronic device.

[0022] The user device 110 may include a processor 115,
volatile memory 120, non-volatile memory 125, a display
device 130, an input/output (I/O) device 135, a transceiver
140, and other components 145. The other components 145
may include, for example, an audio input device, an audio
output device, a battery that provides a limited power supply,
a data acquisition device, ports to electrically connect the
user device 110 to other electronic devices, ports that
provide a wired connection to an internet protocol (IP) based
network, etc.

[0023] The processor 115 may be configured to execute a
plurality of applications of the user device 110. For example,
the applications may include a user-facing application 150.
The user-facing application 150 may be configured to
include any of a variety of different application features
(e.g., a video player, a web feed, various GUIs, various
graphics, various animations, etc.). In some embodiments,
the user-facing application 150 may include a crash recovery
mechanism 155. In other embodiments, the crash recovery
mechanism 155 may be a separate piece of software. The
crash recovery mechanism 155 may be configured to iden-
tify an application feature of the user-facing application 150
that caused the user-facing application 150 to crash and then
mitigate the cause of the crash locally by disabling the
identified application feature.

[0024] The user-facing application 150 and crash recovery
mechanism 155 being executed by the processor 115 is only
exemplary. The functionality associated with the user-facing
application 150 and the crash recovery mechanism 155 may
also be represented as separate incorporated components of
the UE 110 or may be a modular component coupled to the
UE 110, e.g., an integrated circuit with or without firmware.
For example, the integrated circuit may include input cir-
cuitry to receive signals and processing circuitry to process
the signals and other information. In addition, in some user
devices, the functionality described for the processor 115 is
split among two or more processors. The exemplary embodi-
ments may be implemented in any of these or other con-
figurations of a user device.

[0025] The volatile memory 120 may represent a hardware
component that provides random access memory (RAM),
which is a type of memory used for storage on a temporary
basis. The volatile memory 120 may refer to any type of
RAM, e.g., static RAM, dynamic RAM, synchronous RAM,
enhanced RAM, etc. However, the volatile memory 120
being a type of RAM is only exemplary and the volatile
memory 120 may refer to any type of volatile memory
component that is used to store data or machine code for
execution by the user device 110. The non-volatile memory
125 may represent a hardware component that stores data
that may be accessed by the user device 110 (e.g., a hard
drive). The non-volatile memory 125 may represent any
appropriate storage component, e.g., a hybrid hard drive
(HDD), a solid-state drive (SSD), an external storage device,
etc.

US 2021/0157670 Al

[0026] The display device 130 may be a hardware com-
ponent configured to display data or other information to a
user while the /O device 135 may be a hardware component
that enables the user to enter inputs. The display device 130
and the I/O device 135 may be separate components or
integrated together such as a touchscreen. The transceiver
140 may be a hardware component configured to establish a
connection with a wireless network, e.g., a cellular network,
a wireless local area network (WLAN), etc.

[0027] FIG. 2 shows an exemplary method 200 for the
user-facing application 150 to implement automated crash
recovery according to various exemplary embodiments. The
method 200 will be described with regard to the user device
100 of FIG. 1.

[0028] In 205, the user-facing application 150 is launched.
For example, a user-initiated action at the user-device 110
may initiate the launch (e.g., the selection of an icon). In
response, the application’s machine code may be loaded
from the non-volatile memory 125 to the volatile memory
120 for execution. This may also include loading machine
code for any linked dependencies associated with the user-
facing application 150. For example, the user-facing appli-
cation 150 may be configured with a dynamically linked
dependent library. Like the application features, when
machine code corresponding to a linked dependency is
executed it may result in an error that causes the user-facing
application 150 to crash.

[0029] In 210, a crash reporter is enabled. For example,
after or during initial startup operations are performed, the
user-facing application 150 may enable the crash reporter.
The crash reporter may be embedded in the user-facing
application 150 or may be a software tool configured to
operate in conjunction with the user-facing application 150.
Enabling the crash reporter may include the crash reporter
hooking into the exception handlers of the user-facing
application 150 and monitoring for indications that a crash
has occurred.

[0030] If a crash occurs, the crash reporter may be con-
figured to save information regarding the execution of the
user-facing application 150 to the non-volatile memory 125.
This information may be referred to as a crash report. The
crash report that is saved to the non-volatile memory may
include information that is conventionally included in a
crash report. However, the crash report according to the
exemplary embodiments may also include one or more stack
traces. The stack trace may include a variety of different
types of information, including but not limited to, an indi-
cation of which thread of execution crashed, an indication of
the call stack that lead up to the crash, an indication of the
file the call originated from, an indication of the offset within
the machine code, an indication of the exception type and an
indication of memory locations. As will be described in
more detail below, the crash recovery mechanism 155 may
utilize the crash report in determining which portion of the
machine code caused the user-facing application 150 to
crash.

[0031] In 215, the user-facing application 150 determines
whether a predetermined condition is satisfied. The prede-
termined condition may indicate to the user-facing applica-
tion 150 whether a crash occurred during a previous execu-
tion of the user-facing application 150. The user-facing
application 150 may make this determination based on any
of a plurality of factors, including but not limited to,
information collected by the crash reporter, information

May 27, 2021

collected by the crash recovery mechanism 155, information
collected by the user-facing application 150 or information
collected from other software, hardware or firmware of the
user device 110.

[0032] When the predetermined condition in 215 is satis-
fied, this may indicate to the crash recovery mechanism 155
that a crash occurred during the previous execution of the
user-facing application 150. Accordingly, as will be
described in more detail below in 230, the crash recovery
mechanism 155 may attempt to identify the cause of the
crash by performing crash recovery analysis.

[0033] In this example, the predetermined condition in
215 is not satisfied. Accordingly, the method 200 continues
to 220. In 220, the crash recovery mechanism 155 collects
and stores information corresponding to the runtime envi-
ronment. Throughout this description this information may
be referred to as environmental data. To provide an example,
the environmental data may include information such as, but
not limited to, a method or functions location within the
machine code of the user-facing application 150 and the
user’s interactions with the user-facing application 150. The
collection of environmental data will be described in more
detail below with regard to method 300 of FIG. 3.

[0034] As will be described below, if a crash occurs, the
crash recovery mechanism 155 may utilize the environmen-
tal data in determining which portion of the machine code
caused the user-facing application 150 to crash.

[0035] In 225, a crash may occur during runtime of the
user-facing application 150. If no crash occurs in 225, the
method 200 ends. If a crash does occur in 225, the method
200 returns to 205 where the user-facing application 150 is
relaunched.

[0036] As indicated above, after the launch in 205, the
crash reporter is enabled in 210 and then the method 200
returns to 215 where the user-facing application 150 deter-
mines whether a predetermined condition is satisfied. In this
example, since the crash occurred in 225, the predetermined
condition in 215 is satisfied and the method 200 continues to
230.

[0037] In 230, the crash recovery mechanism 155 per-
forms crash recovery analysis in an attempt to determine the
cause of the crash in 225. The crash recovery analysis may
include processing the crash report and the environmental
data. For example, a stack trace included in the crash report
may coincide with a method or functions location within the
machine code of the user-facing application 150 as indicated
in the environmental data. This may indicate to the user-
facing application 150 that machine code corresponding to
a particular application feature caused the crash in 225. The
crash recovery analysis will be described in more detail
below with regard to method 400 of FIG. 4.

[0038] In 235, the crash recovery mechanism 155 disables
the application feature corresponding to the identified
machine code. For example, the crash recovery mechanism
155 may modify the local copy of the configuration to set a
feature flag to a value that causes the execution of the
machine code corresponding to the application feature to not
be executed. Subsequently, the method 200 returns to 220
where the environmental data for the current execution of
the user-facing application 150 is collected.

[0039] FIG. 3 shows an exemplary method 300 for record-
ing environmental data according to various exemplary
embodiments. The method 300 will be described with regard
to the user device 100 of FIG. 1 and the method 200 of FIG.

US 2021/0157670 Al

2. Any particular type of information referenced in the
description of the method 300 is not intended to limit the
exemplary embodiments to recording or utilizing any par-
ticular type of information nor is it intended to limit the
scope of the term environmental data to include any par-
ticular type of information. Environmental data may include
any point of data from the runtime environment that may
provide an indication of the cause of a crash.

[0040] As mentioned above, the environmental data may
be utilized during crash recovery analysis to determine the
cause of a crash. The crash recovery analysis will be
described in more detail below with regard to the method
400 of FIG. 4.

[0041] In 305, the crash recovery mechanism 155 records
a timestamp for the application launch time. Generally, the
cause of a crash is more difficult to mitigate when the crash
occurs soon after application launch. Accordingly, as will be
described below in FIG. 4, the application launch time may
be utilized to determine how to mitigate the cause of the
crash.

[0042] In 310, the crash recovery mechanism 155 inspects
the volatile memory 120 and records information corre-
sponding to the configuration of the application’s machine
code. This may include marking the location of a method or
function within the machine code that corresponds to an
application feature configured with a feature flag. As will be
described below, this information and the crash report may
be utilized to determine the cause of the crash.

[0043] Marking a location of a portion of the machine
code may be based on the offset. In this context, offset
generally refers to an indication of the distance between a
first location within the machine code and a second location
within the machine code. The offset is recorded because it
remains constant between application launches and offsets
corresponding to various portions of the machine code may
be included in the crash report.

[0044] For instance, as indicated above, the user-facing
application 150 may include an application feature that
corresponds to a feature flag. In this example, from the
machine code perspective, the application feature corre-
sponding to the feature flag may be comprised of instruc-
tions that represent a first method and a second method.
During runtime, the crash recovery mechanism 155 may
inspect the contents of the memory for the machine code
representation of the first method and the second method.
When the first method is identified within the machine code,
the crash recovery mechanism 155 may record the offset of
the first method and store an indication that the offset of the
first method is associated with the corresponding feature
flag. Similarly, when the second method is identified within
the machine code, the crash recovery mechanism 155 may
record the offset of the second method and store an indica-
tion that the offset of the second method is associated with
the corresponding feature flag. Thus, the environmental data
may include information that indicates the offset of the first
method and the offset of the second method correspond to
the same feature flag.

[0045] As will be described below with regard to FIG. 4,
the stack trace of the crash report may include indications of
offsets corresponding to various portions of the machine
code that were executed prior to the crash. Accordingly, if
either the offset of the first method or the offset of the second
method is identified in the stack trace of the crash report, the
crash recovery mechanism 155 may determine that the

May 27, 2021

application feature comprised of the first method and the
second method was the cause of the crash. Thus, crash
recovery mechanism 155 may mitigate the crash by setting
the feature flag to a value that prevents the machine code
corresponding to the application feature from executed.
[0046] In some embodiments, the machine code may be
built and delivered by the developer in a format that is
compatible with the user device 110. In this scenario, offsets
within the machine code may be determined at compile time.
In other embodiments, the user-facing application 150 may
be delivered by the developer in an intermediary represen-
tation that is to be compiled down into a format that is
compatible with the user device 110. In this scenario, offsets
within the machine code may be determined during runtime.
[0047] In 315, the crash recovery mechanism 155 records
user actions. If a crash occurs, the actions performed by the
user may indicate which application features were being
utilized prior to the crash.

[0048] In 320, the crash recovery mechanism 155 records
network requests and responses. For example, the user
device 110 may be connected to a wireless network and the
user-facing application 150 may be connected to a server via
the network connection. The user-facing application 150
may be configured to access various services from the
server. For example, during runtime, the server may provide
streaming media (e.g., audio, video) to be played by a media
player (e.g., an application feature) embedded within the
user-facing application 150. Accordingly, the user-facing
application 150 may be configured to send requests via the
network connection and receive responses from the network
connection. Operations related to processing the data asso-
ciated with these requests and responses may cause a crash
to occur.

[0049] In 325, the user-facing application 150 crashes and
the environmental data is saved to the non-volatile memory
125 for subsequent analysis.

[0050] FIG. 4 shows an exemplary method 400 for crash
recovery analysis according to various exemplary embodi-
ments. The method 400 will be described with regard to the
user device 100 of FIG. 1, the method 200 of FIG. 2 and the
method 300 of FIG. 3. As referenced in the description of the
method 200, the crash recovery analysis may be performed
by the crash recovery mechanism 155 after the user-facing
application 150 crashes during a previous execution.
[0051] In 405, the crash recovery mechanism 155 com-
pares the crash report and the environmental data. As
indicated above, the crash report may include a stack trace
that indicates which thread of execution crashed, the call
stack that lead up to the crash, the file the call originated
from, the offset within the machine code of the call, the
exception type and memory locations.

[0052] The environmental data may include information
corresponding to the configuration of the user facing-appli-
cation’s 150 machine code within the volatile memory 120.
FIG. 5 shows an example of environmental data according
to various exemplary embodiments. The environmental data
may include a first portion 505 that includes a timestamp that
indicates when the user-facing application 150 launched and
a timestamp that indicates when the user-facing application
150 crashed. The environmental data may include a second
portion 510 that includes an indication of the application
features that are configured with a corresponding feature
flag. A third portion 515 includes various memory locations
for the application features included in the second portion

US 2021/0157670 Al

510. The environmental data may include a further portion
520 that includes an indication of the user actions that
occurred during runtime.

[0053] The exemplary environmental data show in FIG. §
is only provided for illustrative purposes and is not intended
to limit environmental data to the data show in FIG. 5 nor
is it intended to indicate that environmental data is stored in
the format shown in FIG. 5. The Environmental data may
include any point of data from the runtime environment that
may provide an indication of the cause of a crash and may
be stored in any appropriate format.

[0054] Returning to 405, a comparison of the offsets and
other location data from the crash report to the offsets and
other location data from the environmental data may indi-
cate which application feature or linked dependency was the
cause of the crash.

[0055] In 410, the crash recovery mechanism 155 deter-
mines whether the comparison in 405 identifies the cause of
the crash. If an application feature or linked dependency is
identified, the method 400 continues to 415. If the crash
recovery mechanism 155 is unable to identify a particular
application feature or linked dependency as the cause of the
crash, the method 400 continues to 430.

[0056] In 415, the crash recovery mechanism 155 deter-
mines whether the identified cause of the crash is associated
with a feature flag. If the identified cause of the crash is
associated with a feature flag, the method 400 continues to
420.

[0057] In 420, the software feature determined to have
caused the crash is disabled using the feature flag. For
example, the cause of the crash may be identified as par-
ticular application feature. The crash recovery mechanism
155 may modify the local copy of the configuration to
change the value of the feature flag corresponding to the
identified application feature to a value that prevents the
machine code corresponding to the identified application
feature from being executed. Thus, the cause of the crash
during the previous execution of the user-facing application
150 has been disabled.

[0058] In 425, the user-facing application 150 may send
information to a crash reporting service. However, unlike
conventional crash reporting, the user-facing application
150 may send information that includes an indication of the
cause of the crash. This may allow developers to provide an
update to other user devices prior to the user devices
experiencing a similar crash. Returning to 415, if the iden-
tified cause of the crash is not associated with a feature flag,
the method 400 continues to 425. After the information is
sent to the crash reporting service in 425 the method 400
may end.

[0059] Returning to 430, since no clear indication is
identified in 410, the crash recovery mechanism 155 may
select a countermeasure based on the environmental data.
[0060] A first countermeasure may include disabling vari-
ous portions of the user-facing application’s 150 machine
code using a plurality of feature flags. For example, while
the comparison in 405 did not provide a clear indication as
to the cause of the crash, the comparison in 405 may indicate
that a plurality of application features or linked dependen-
cies were potentially the cause of the crash. Other environ-
mental data such as the user actions recorded in 315 and the
network requests and responses recorded in 320 may also
provide an indication of one or more application features or
linked dependencies that were potentially the cause of the

May 27, 2021

crash. Using this type of data, the crash recovery mechanism
155 may identify a plurality of feature flags.
[0061] Accordingly, in some embodiments, the crash
recovery mechanism 155 may disable all of the identified
feature flags. In other embodiments, the crash recovery
mechanism 155 may initially disable a subset of the iden-
tified feature flags and if a crash occurs, disable a further
subset of the corresponding feature flags during the subse-
quent execution of the user-facing application 150.
[0062] A second countermeasure may include altering the
behavior of the user-facing application 150. This may
include preventing further machine code execution after a
particular event. For example, as mentioned above with
regard to 305 the cause of a crash is more difficult to mitigate
when the crash occurs soon after application launch. Accord-
ingly, if the difference between the application launch time
and the application crash time does not satisfy a predeter-
mined threshold, the crash recovery mechanism 155 may
alter the behavior of the user-facing application 150 such
that further machine code is not executed until configuration
information is received from a developer that is intended to
mitigate the cause of the crash.
[0063] After the counter measure is implemented, the
method 400 continues to 425 where the user-facing appli-
cation 150 may send information to a crash reporting
service. If an appropriate counter measure is identified, the
information sent to the crash reporting service may also
identify the selected counter measure. Thus, unlike conven-
tional crash reporting, in this scenario the information may
identify the cause of the crash and a way to mitigate the
cause of the crash.
[0064] Those skilled in the art will understand that the
above-described exemplary embodiments may be imple-
mented in any suitable software or hardware configuration
or combination thereof. An exemplary hardware platform
for implementing the exemplary embodiments may include,
for example, an Intel x86 based platform with compatible
operating system, a Windows platform, a Mac platform and
MAC OS, a Linux based OS, a mobile device having an
operating system such as iOS, Android, etc. In a further
example, the exemplary embodiments of the above
described method may be embodied as a computer program
product containing lines of code stored on a computer
readable storage medium that may be executed on a pro-
cessor or microprocessor. The storage medium may be, for
example, a local or remote data repository compatible or
formatted for use with the above noted operating systems
using any storage operation.
[0065] It will be apparent to those skilled in the art that
various modifications may be made in the present disclo-
sure, without departing from the spirit or the scope of the
disclosure. Thus, it is intended that the present disclosure
cover modifications and variations of this disclosure pro-
vided they come within the scope of the appended claims
and their equivalent.
What is claimed is:
1. A method for improving operation of a user device
running an application, comprising:
collecting a first set of data corresponding to a run time
environment of the application;
collecting a second set of data corresponding to a crash of
the application;
identifying a cause of the crash based on the first set of
data and a second set of data; and

US 2021/0157670 Al

determining the cause of the crash is associated with an
application feature corresponding to a feature flag.

2. The method of claim 1, further comprising:

disabling the application feature using the feature flag
based on determining the cause of the crash is associ-
ated with the application feature.

3. The method of claim 1, wherein the application feature
corresponds to a portion of machine code and wherein the
first set of data includes a memory location of the portion of
the machine code.

4. The method of claim 3, wherein the second set of data
includes one or more stack traces corresponding to the crash.

5. The method of claim 4, wherein determining the cause
of the crash is associated with the application feature is
based on identifying the memory location of the portion of
the machine code within the one or more stack traces.

6. The method of claim 1, further comprising:

Sending, by the user device, information to a remote
location via a network connection, wherein the infor-
mation includes an indication that the cause of the crash
is associated with the application feature.

7. The method of claim 6, wherein the information is a

crash report.
8. A user device comprising:
a volatile memory; and
a processor configured to execute an application, wherein
the application includes an application feature corre-
sponding to a feature flag, the application configured to
perform operations, comprising:
collecting a first set of data corresponding to a run time
environment of the application;

collecting a second set of data corresponding to a crash
of the application;

identifying a cause of the crash based on the first set of
data and a second set of data; and

determining the cause of the crash is associated with
the application feature.

9. The user device of claim 8, the operations further
comprising:

disabling the application feature using the feature flag
based on determining the cause of the crash is associ-
ated with the application feature.

10. The user device of claim 9, wherein the application
feature corresponds to a portion of machine code and
wherein the first set of data includes an indication of a
location within the volatile memory of the portion of the
machine code.

11. The user device of claim 10, wherein the second set of
data includes one or more stack traces corresponding to the
crash.

May 27, 2021

12. The user device of claim 11, wherein determining the
cause of the crash is associated with the application feature
is based on comparing the first set of data and the second set
of data.
13. A method, comprising:
collecting a first set of data corresponding to a run time
environment of an application running on a user device,
wherein the application includes a plurality of applica-
tion features, each of the plurality of application fea-
tures corresponding to a respective feature flag;

collecting a second set of data corresponding to a crash of
the application;

identify a cause of the crash based on the first set of data

and the second set of data;

determining whether a cause of the crash of the applica-

tion is associated with only a single application feature;
and

when the cause of the crash is associated with only the

single application feature, disabling the single applica-
tion feature using the corresponding feature flag.

14. The method of claim 13, wherein the user device
sends information to a remote location via a network con-
nection, wherein the information includes an indication that
the cause of the crash is associated with the single applica-
tion feature.

15. The method of claim 13, further comprising:

when the cause of the crash is associated with more than

one application feature, selecting a subset of the more
than one application feature based on the first set of
data.

16. The method of claim 15, further comprising:

disabling the subset of the more than one application

feature using their respective feature flags.

17. The method of claim 16, wherein the user device
sends information to a remote location via a network con-
nection, wherein the information includes (i) a first indica-
tion that the cause of the crash is associated with the more
than one application feature and (ii) a second indication that
disabling the subset of the more than one application feature
mitigates the cause of the crash.

18. The method of claim 13, further comprising:

when the cause of the crash is indeterminate, selecting a

countermeasure to mitigate the cause of the crash based
on the first set of data.

19. The method of claim 18, wherein the counter measure
includes altering when a portion of machine code is to be
executed.

20. The method of claim 18, wherein the first set of data
includes an application launch time and an application crash
time, wherein the countermeasure is selected based on the
difference between the application launch time and the
application crash time.

#* #* #* #* #*

